Evaluation of Retrieval-Augmented Generation (RAG) for
Code Search

1. Baseline Performance (Regular RAG with No Modifications)

The initial setup involved splitting the code into chunks and embedding them using text-embedding-small.
Using similarity retrieval, this approach achieved the following:

¢ Best-performing setup: Chunk size 700, chunk overlap 100.
e Recall@10: 63.7%.

[Decent performance, but significant room for improvement. j

2. Using LLM Summaries for Embeddings

Since queries are in natural language, code was summarized using an LLM before embedding. Although this
made vector store creation much slower, it improved retrieval accuracy:

e Chunk size 700, overlap 100 — Recall@10: 67.6%.

[Better than the baseline, but still far from optimal. j

3. Experimenting with Query Expansion (Did Not Work Well)

Expanding queries using different prompt templates introduced several drawbacks:
o Inference time increased significantly.
e Accuracy dropped across all chunk sizes and overlaps.

o Best attempt (shortened expanded queries) reached only Recall@10: 64.3%, still worse than the original
queries.

[Conclusion: Query expansion is not worth it for this task. j

4. Improving Summarization & Using a Bigger Embedding Model
To further enhance retrieval:
e A better summarization prompt with more metadata was used.

o Switched from text-embedding-small to text-embedding-large (slightly more expensive but potentially
more effective).

Results:



e Chunk size 1100, overlap 100 — Recall@10: 69.5% (Best for this setting).

o Chunk size 700, overlap 100 — Recall@10: 70.2% (Best overall).

[This was the most effective setup, achieving the highest retrieval accuracy at this stage. j

5. Further Enhancements & Best Achieved Performance

After including file extensions in the dataset, accuracy improved. Additional experiments with adding code
snippets alongside the summaries led to a major improvement:

¢ Chunk size 1200, overlap 200 — Recall@10: 80.9%.

Enhancing metadata by including a list of functions and classes present in each file resulted in:
e Recall@10: 84.6%.

Finally, fixing an error in the querying process boosted accuracy further:
e Recall@10: 85.8%.

o Recall@40: 89.3% (Suggesting a more expensive re-ranking system could further improve results).

[Best RAG system so far, with a significant improvement over the baseline. ]

6. Experimenting with an LLM-Based Re-Ranker

An experiment with an LLM-based re-ranker produced mixed outcomes:
o Inference time increased significantly, making the system less practical for real-time applications.

e Accuracy dropped slightly, likely due to the re-ranker introducing noise or misaligning with the retrieval
objectives.

(Conclusion: The LLM-based re-ranker was not effective for this task and is not recommended. ]

7. Experiments with Other Languages

During evaluation, some files in the dataset were in Russian. Key observations include:

o Translated queries in Russian retrieved the exact Russian README file that was previously missed, but
failed to retrieve the corresponding English README file.

e Overall accuracy with Russian queries was 83.3%), slightly worse than with English prompts (85.8%).

[Conclusion: Could be useful in specific cases but shouldn’t make a difference overall. j




8. Experiments with Contextual Embeddings

Contextual embeddings were tested to evaluate their impact on retrieval accuracy. While they introduced
additional complexity, they provided mixed results:

¢ Indexing time increased significantly due to the added complexity of contextual embeddings.
« Recall@10 dropped slightly to 81.2%, while Recall@50 improved to 94.7%.

o Further experiments revealed that contextual embeddings were more useful for
generation tasks rather than retrieval.

e The original approach of appending the code summary at the beginning of the file was better suited for
the retrieval task since it produced both a chunk in natural language (NL) and code chunks, allowing the
retriever to access both.

Conclusion: Contextual embeddings are beneficial for generation tasks but not optimal for direct retrieval
at the file level.

9. Refining the Summary Prompt for Better Retrieval

Upon analyzing retrieved and missed files, it became clear that understanding the overall purpose of a
file determined by both code and file path could help improve retrieval accuracy. The summary prompt was
refined accordingly:

e Recall@10 improved to 88.8% —the highest achieved performance.

« Recall@40 reached 94.5%, suggesting further improvements could be achieved with a more sophisticated
re-ranking system.

Conclusion: Refining the summary prompt by incorporating file path information and code-based metadata
significantly improved retrieval accuracy.

4 ™
Key Insights:

e The RAG system can handle multilingual content effectively.

e There is a trade-off in accuracy when translating queries.

o For multilingual datasets, a hybrid approach (e.g., querying in both languages and merging results)
might be worth exploring.

e Contextual embeddings arent worth it for the task at hand

10. Summary of Findings

11. Final Conclusion & Next Steps

e Chunk size: 700 with 100 overlap performed well initially, but 1200/200 provided the best final perfor-
mance.

e LLM Summaries: Summarizing code with an LLM improves retrieval but increases indexing time.
e Embedding Model: Switching to a larger embedding model further boosts recall.

e« Metadata: Adding metadata and fixing query processing errors led to the highest accuracy gains.



Method Best Chunk Size Best Overlap Recall@10 (%)

Regular RAG (no modifications) 700 100 63.7
With LLM-generated summaries 700 100 67.6
With Query Expansion 700 100 64.3
Improved summaries + larger embedding model 1100 100 69.5
Improved summaries + large embedding model 700 100 70.2
With additional extensions 4+ code snippets 1200 200 80.9
With enhanced metadata (functions & classes) 1200 200 84.6
Optimized RAG (query fix applied) 1200 200 85.8
Final optimized RAG (file purpose) 1200 200 88.8
With LLM-based re-ranker 1200 200 78.0
With translated queries (Russian) 1200 200 83.3

Table 1: Summary of Experimental Findings

« LLM-based Re-Ranker: Increased inference time while reducing accuracy, making it unsuitable for this
task.

e Multilingual Handling: The system can handle multilingual content, but translating queries may slightly
reduce accuracy. A hybrid approach could be explored.

¢ Contextual embeddings: Contextual embeddings are not worth it for the task at hand.

NOTE: The scope of this RAG system was limited to a single code base: |https://github.com/viarotel-
org/escrcpy/blob/main/.nvmdrc. The tests and experiments conducted are not the best benchmarks for the
techniques used; however, they still provide valuable insights. For future development and accuracy improve-
ments, a larger dataset would definitely be necessary.


https://github.com/viarotel-org/escrcpy/blob/main/.nvmdrc
https://github.com/viarotel-org/escrcpy/blob/main/.nvmdrc

	Baseline Performance (Regular RAG with No Modifications)
	Using LLM Summaries for Embeddings
	Experimenting with Query Expansion (Did Not Work Well)
	Improving Summarization & Using a Bigger Embedding Model
	Further Enhancements & Best Achieved Performance
	Experimenting with an LLM-Based Re-Ranker
	Experiments with Other Languages
	Experiments with Contextual Embeddings
	Refining the Summary Prompt for Better Retrieval
	Summary of Findings
	Final Conclusion & Next Steps

